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abstract

Air pollution is of serious concern in many Asian countries, especially in densely-populated cities
with many highly-polluting two-stroke engine vehicles.The present value of health effects have
been estimated at hundreds of dollars or more, over each vehicle’s lifetime, for a reasonably
wealthy country like Taiwan. Four-stroke engines and electric battery-powered scooters are often
proposed as alternatives, but a fuel cell scooter would be superior to both by offering both zero

tailpipe emissions and combustion-scooter class range (200 km).

Unlike 50 kW automobile-sized fuel cell stacks, the vehicular 5 kW fuel cell needed here has not
received much attention. This niche is examined here with a conceptual design and consideration of
the issues of water, heat, and gas management. The application is extremely sensitive to size,
weight, and cost, so a proton exchange membrane fuel cell using hydrogen stored in a metal
hydride is best. Hydrides also act as sinks for waste heat due to the endothermic hydrogen
desorption process. Pressurized operation is found to be ineffective due to high parasitic power

demands and low efficiencies at the low powers involved.

A computer simulation is developed to examine overall vehicle design. Vehicle characteristics
(weight, drag, rolling resistance), fuel cell polarization curves, and a Taiwanese urban driving

cycle are specified as inputs. Transient power requirements reach 5.9 kW due to the rapid
accelerations, suggesting a large fuel cell. However, average power is only 600 W: a hybrid vehicle
with a small fuel cell and peaking batteries could also handle the load. Results show that hybrid
vehicles do not significantly improve mileage, but are certain to precede pure fuel cell scooters

while fuel cells are still more expensive than peaking batteries.



System size is approximately the same as current electric scooters, at 43 L and 61 kg for the fuel
cell, hydrogen storage, and electric motor / controller. Manufacturing costs of fuel cell scooters are
expected to decrease to under $1,300 inathg term, with per-km fuel costs half of those for

gasoline scooters. Hybrid zinc-air scooters offer similar performance at slightly lower vehicle

price, but the fuel infrastructure costs may be prohibitive.
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